Benha University Faculty of Engineering (at Shoubra) Electrical Engineering Department (Computer Systems Engineering) Subject: Image Processing – ECE 441C 4th Year

Midterm Exam Date: Tuesday 15/11/2016 Duration: 1 hour № of Questions: 4 in 3 pages Total Marks: 20

(6 Marks)

Attempt **all** the following questions:

Name:

Question 1: <u>Choose the best answer:</u>

Question	1	2	3	4	5	6	7	8	9	10	11	12
Answer												
1. Smallest value of gamma will produce												
a.	a. contrast c. brighter image											
b.	b. darker image					d. black and white image						
2. Sp	2. Spatial domain is denoted by											
a.	a. $g(x,y) = [f(x,y)]$					c. $g(x,y) = T[f(x,y)]$						
b.	g(x,y)	= T[f((x)]			d. g(x,y	$f_{1}(x,y) = T[f(y)]$					
3. W	hich or	ne is no	t proces	ss of im	age pro	ocessin	g					
a.	high l	level	1		0 1	c. last level:						
b.	low le	evel				d. mid	level					
4. Sn	nallest	possibl	e neigh	bor hoo	od in a	image 1	nust be	of size	•			
a.	a. 3x3 b. 2x2					c. 1x1 d. 4x4						
5. Sn	5. Smoothing spatial filters are useful for											
a.	a. image enhancement					c. highlight gross details						
b.	b. image restoration				d. highlight fine details							
6. In			filter	s, there	e is no c	lifferen	ce betv	veen co	rrelatio	on & con	nvolutio	on
a.	a. symmetric c. asymmetric											
b.	b. equal				d. simple							
7. Th	The											
im	image.											
a. histogram c. histogram equalization			on	1								
b.	contra	ist Strete	ching			d. transformation function						
8. Im	8. Image processing defined as a discipline in which											
a.	a. The input of a process is an image description and the output is image											
b.	Both	the inp	ut and c	output c	of a pro	process are images.						
C.	c. Both the input and output of a process are descriptions.											
d.	a. The input of a process is an image and the output is an image description.											
9. In	n the formula $g(x,y) = T[f(x,y)]$, T is the											
a. h	transfe	ormatio	n functi	ion			c. trans	sformat	ion vec	otor		
0.												

Midterm Exam Date: Tuesday 15/11/2016 Duration: 1 hour № of Questions: 4 in 3 pages Total Marks: 20

Attempt **all** the following questions:

10	. In bit plane slicing th	e most of the information	ion of an image is cont	ained by		
	a. mid order plane		c. lowest order plane			
	b. highest order plane	e	d. all planes			
11	. Negative of the image	e having intensity valu	es [0,L-1] is expressed	by		
	a. s = L-1	b. s = 1-r	c. $s = L - 1 - r$	d. $s = L-r$		
12	. Log transformation is	given by the formula				
	a. $s = c \log(r)$	b. $s = c \log(1+r)$	c. s = c $\log(2+r)$	d. $s = log(1+r)$		

Question 2: <u>Complete the following sentences:</u>

(6 Marks)

- 1. is the operation of taking a corrupt/noisy image and estimating the clean, original image.
- 2. deals with tools for extracting image components that are useful in the representation and description of shape.
- 3. Partition an image into its constituent parts or objects is called
- 4. is the process of assigns a label to an object based on its descriptors.
- 5. Image processing techniques are used extensively by law enforcers in many applications such as and
- 7. There are two broad categories of image enhancement techniques which are _________ and _______.
- 8. plots how many times (frequency) each intensity value in image occurs.
- 9. are useful for enhancing white or grey detail embedded in dark regions of an image.
- 10. Second derivative of I(x) has at edge.
- 11. What to do at image boundaries?

Benha University Faculty of Engineering (at Shoubra) Electrical Engineering Department (Computer Systems Engineering) Subject: Image Processing – ECE 441C 4th Year

Midterm Exam Date: Tuesday 15/11/2016 Duration: 1 hour № of Questions: 4 in 3 pages Total Marks: 20

Attempt **all** the following questions:

Question 3:

(4 Marks)

- a. (3 marks) Consider the image shown below; compute the equalized image with eight possible gray levels. Show each step carefully. Draw the histograms of the original and equalized images.
- b. (1 mark) What's your opinion about the output image.

1	2	1	1	2	0
0	1	0	1	0	1
1	6	7	6	1	2

Question 4:

a. (2 marks) A 4x4 image is given by

255	112	22	102
80	90	10	112
98	75	20	119
200	100	9	105

Filter the image using a median filter (padding with zeros), where the filter mask is given by:

b. (2 marks) In a given application an averaging mask is applied to input image to reduce noise, and then a Laplacian mask is applied to enhance small details. Would the result be the same if the order of these operations were reversed?

Good Luck Dr. Shady Yehia Elmashad

ECE 441C

3 of 3

Midterm – Tuesday 15-11-2016

(4 Marks)